Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 138(25): 2714-2726, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34610086

RESUMO

Severe traumatic brain injury (TBI) often causes an acute systemic hypercoagulable state that rapidly develops into consumptive coagulopathy. We have recently demonstrated that TBI-induced coagulopathy (TBI-IC) is initiated and disseminated by brain-derived extracellular vesicles (BDEVs) and propagated by extracellular vesicles (EVs) from endothelial cells and platelets. Here, we present results from a study designed to test the hypothesis that anticoagulation targeting anionic phospholipid-expressing EVs prevents TBI-IC and improves the outcomes of mice subjected to severe TBI. We evaluated the effects of a fusion protein (ANV-6L15) for improving the outcomes of TBI in mouse models combined with in vitro experiments. ANV-6L15 combines the phosphatidylserine (PS)-binding annexin V (ANV) with a peptide anticoagulant modified to preferentially target extrinsic coagulation. We found that ANV-6L15 reduced intracranial hematoma by 70.2%, improved neurological function, and reduced death by 56.8% in mice subjected to fluid percussion injury at 1.9 atm. It protected the TBI mice by preventing vascular leakage, tissue edema, and the TBI-induced hypercoagulable state. We further showed that the extrinsic tenase complex was formed on the surfaces of circulating EVs, with the highest level found on BDEVs. The phospholipidomic analysis detected the highest levels of PS on BDEVs, as compared with EVs from endothelial cells and platelets (79.1, 15.2, and 3.5 nM/mg of protein, respectively). These findings demonstrate that TBI-IC results from a trauma-induced hypercoagulable state and may be treated by anticoagulation targeting on the anionic phospholipid-expressing membrane of EVs from the brain and other cells.


Assuntos
Anexina A5/uso terapêutico , Anticoagulantes/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Vesículas Extracelulares/efeitos dos fármacos , Fosfolipídeos/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Trombofilia/tratamento farmacológico , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Masculino , Camundongos Endogâmicos C57BL , Trombofilia/etiologia , Trombofilia/metabolismo , Trombofilia/patologia
2.
Mol Ther ; 26(3): 801-813, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433939

RESUMO

We describe a novel, two-nanoparticle mRNA delivery system and show that it is highly effective as a means of intracellular enzyme replacement therapy (i-ERT) using a murine model of ornithine transcarbamylase deficiency (OTCD). Our Hybrid mRNA Technology delivery system (HMT) comprises an inert lipid nanoparticle that protects the mRNA from nucleases in the blood as it distributes to the liver and a polymer micelle that targets hepatocytes and triggers endosomal release of mRNA. This results in high-level synthesis of the desired protein specifically in the liver. HMT delivery of human OTC mRNA normalizes plasma ammonia and urinary orotic acid levels, and leads to a prolonged survival benefit in the murine OTCD model. HMT represents a unique, non-viral mRNA delivery method that allows multi-dose, systemic administration for treatment of single-gene inherited metabolic diseases.


Assuntos
Terapia Genética , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Ornitina Carbamoiltransferase/genética , RNA Mensageiro/genética , Animais , Modelos Animais de Doenças , Terapia Genética/métodos , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Micelas , Nanopartículas , Nanotecnologia , Ornitina Carbamoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Polímeros , RNA Mensageiro/administração & dosagem , RNA Interferente Pequeno/genética , Ureia/metabolismo
3.
Blood ; 127(5): 637-45, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26552698

RESUMO

The ability of von Willebrand factor (VWF) to initiate platelet adhesion depends on the number of monomers in individual VWF multimers and on the self-association of individual VWF multimers into larger structures. VWF self-association is accelerated by shear stress. We observed that VWF self-association occurs during adsorption of VWF onto surfaces, assembly of secreted VWF into hyperadhesive VWF strings on the endothelial surface, and incorporation of fluid-phase VWF into VWF fibers. VWF adsorption under static conditions increased with increased VWF purity and was prevented by a component of plasma. We identified that component as high-density lipoprotein (HDL) and its major apolipoprotein ApoA-I. HDL and ApoA-I also prevented VWF on the endothelium from self-associating into longer strands and inhibited the attachment of fluid-phase VWF onto vessel wall strands. Platelet adhesion to VWF fibers was reduced in proportion to the reduction in self-associated VWF. In a mouse model of thrombotic microangiopathy, HDL also largely prevented the thrombocytopenia induced by injection of high doses of human VWF. Finally, a potential role for ApoA-I in microvascular occlusion associated with thrombotic thrombocytopenic purpura and sepsis was revealed by the inverse relationship between the concentration of ApoA-I and that of hyperadhesive VWF. These results suggest that interference with VWF self-association would be a new approach to treating thrombotic disorders.


Assuntos
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Adesividade Plaquetária , Trombose/metabolismo , Fator de von Willebrand/metabolismo , Animais , Apolipoproteína A-I/uso terapêutico , Plaquetas/citologia , Plaquetas/metabolismo , Humanos , Lipoproteínas HDL/uso terapêutico , Camundongos Endogâmicos C57BL , Multimerização Proteica , Trombocitopenia/prevenção & controle , Fator de von Willebrand/química
4.
PLoS One ; 5(8): e12117, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20711428

RESUMO

BACKGROUND: Although quite challenging, neuroprotective therapies in ischemic stroke remain an interesting strategy to counter mechanisms of ischemic injury and reduce brain tissue damage. Among potential neuroprotective drug, cyclin-dependent kinases (CDK) inhibitors represent interesting therapeutic candidates. Increasing evidence indisputably links cell cycle CDKs and CDK5 to the pathogenesis of stroke. Although recent studies have demonstrated promising neuroprotective efficacies of pharmacological CDK inhibitors in related animal models, none of them were however clinically relevant to human treatment. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we report that systemic delivery of (S)-roscovitine, a well known inhibitor of mitotic CDKs and CDK5, was neuroprotective in a dose-dependent manner in two models of focal ischemia, as recommended by STAIR guidelines. We show that (S)-roscovitine was able to cross the blood brain barrier. (S)-roscovitine significant in vivo positive effect remained when the compound was systemically administered 2 hrs after the insult. Moreover, we validate one of (S)-roscovitine in vivo target after ischemia. Cerebral increase of CDK5/p25 activity was observed 3 hrs after the insult and prevented by systemic (S)-roscovitine administration. Our results show therefore that roscovitine protects in vivo neurons possibly through CDK5 dependent mechanisms. CONCLUSIONS/SIGNIFICANCE: Altogether, our data bring new evidences for the further development of pharmacological CDK inhibitors in stroke therapy.


Assuntos
Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Purinas/administração & dosagem , Purinas/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/enzimologia , Animais , Isquemia Encefálica/complicações , Morte Celular/efeitos dos fármacos , Química Farmacêutica , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Humanos , Injeções , Masculino , Camundongos , Mitose/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Purinas/uso terapêutico , Ratos , Roscovitina , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...